GOLD Advanced Data Link Operations

Presented to:

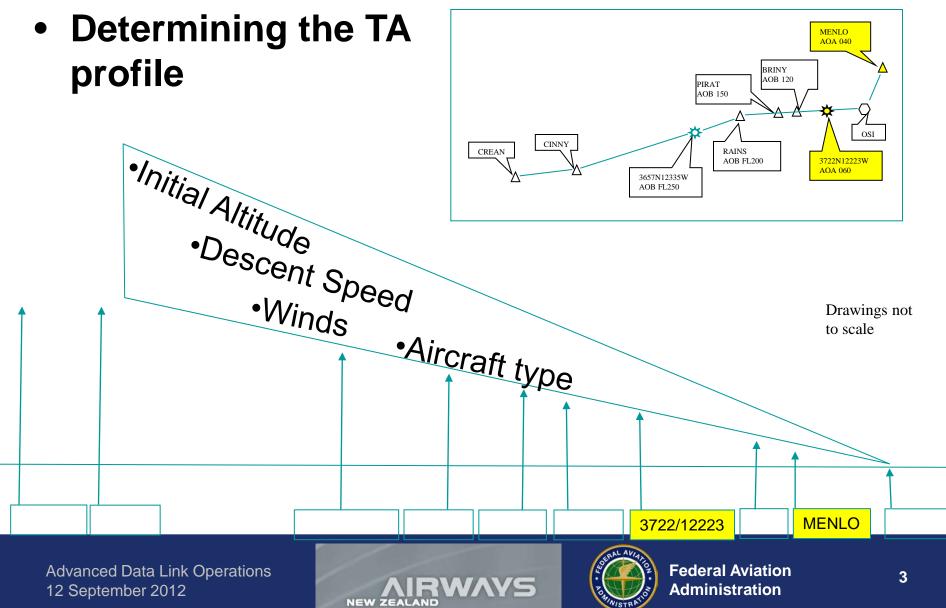
ICAO Seminar/Workshop on the Implementation of Ground-ground and Air-ground Data Links in the SAM Region

By: Paul Radford Airways New Zealand

Date: 12 September 2012

KSFO Tailored Arrival (TA) Trials

- Initial TA Trials began in 2006
 - Early Morning Traffic with little airport demand.
 - UAL aircraft only


Latest TA Trials began December 2007

- Expanded beyond early morning flights
- Refined arrival routing and renamed the arrival
- Added additional operators
- Reduced coordination requirements for controllers

KSFO Tailored Arrival Profiles

Profile Development Goals

• Meet ATC requirements

- Minimum IFR Altitudes
- Noise Abatement
- ATC Altitude Crossing Requirements
- Continuous Descent
- Idle Power Descent
- Keep aircraft within the expected descent profile.

TAILORED ARRIVAL UPLINK

A COMPLEX 4D TRAJECTORY PROFILE CLEARANCE IS UPLINKED TO THE AIRCRAFT FMS

Advanced Data Link Operations 12 September 2012

Federal Aviation Administration

Tailored Arrival Route Clearance

Element One: Clearance Name

								CL	EARAN	ICE							
AN	23C		5126N1	L7258E	08337	4637N:	17425E	09087	4030N1	.7536E	0952/	3401N	17626E	1039/	2719	N17519	E 112:
Ur	rgent	t	Rpt	Negot	Rsp	n H	isc	Yert	Route	Sp	eed	X-ing	Conn	ı			
RI	P	RR	7 Climb	, @Time	₽ ®Fix	≯ ⁵√Time	≯ Fix	DSČND	¥ Time®	®Fix	∳. Time	∳,Fix	CROSS	X Aŭa	AOB	NDA	HOLD
(1	69)	(fre	etext)	PAC	IFIC T	WO T	A										INS
																	881
																	A
	RØ	£8		PRB	SNO	UNRBL.	\$¥F	SRV	E EAL	.T 🛛	VRO	COORD	RCPT	RE.		HLP	CLS

Advanced Data Link Operations 12 September 2012

Tailored Arrival Clearance

• Controller constructs the TA clearance using MOPS Element 83 Route Clearance


	CLEARANCE									
ENZ3C 5126N17258E 2	2308/ 4637N17425E 2343/ 4030N17536E 0027/ 3401N17626E 0113/ 2517N17658E 0210									
Urgent Rpt Negot	Rspn Misc Vert Route Speed X-ing Comm									
RP RR Climb OTime	@Fix "Time "Fix DSCN" ATC_CLEARANCE									
73 AT (time) CLEARED (rte clr) ALT (alt) FREQ (freq) SSR (beacon code)										
79 CLEARED TO (pos) (rte clr)										
	80 CLEARED (rte clr)									
	83 AT (pos) CLEARED (rte clr)									
74 PROCEED DIRECT TO (pos)										
	76 AT (time) PROCEED DIRECT TO (pos)									
PRB CAN TPRB 5	77 AT (pos) PROCEED DIRECT TO (npos)									

Advanced Data Link Operations 12 September 2012

Tailored Arrival Clearance

Advanced Data Link Operations 12 September 2012

Tailored Arrival Route Clearance

- The clearance is constructed to clear the flight via the TA route and to maintain current altitude.
- The clearance is probed for conflicts and then sent to the aircraft.

					CL	EARAN	CE							
ANZ3C	5126N1	.7258E 🤅	833/ 40	6 37N174 25	E 0908/	4030N1	7536E	0952/	3401N	17626E	1039/	2719	N17519	E 112:
Urgent	Rpt	Negot	Rspn	Hisc	Yert	Route	Spe	eed	X-ing	Conn	1			
RP RR	∕ Climb	ح @Time	€Fix ^b	, ∕Time ∿Fi	× DSČND	QTime	€Fi×	b√ ™Time	∳,Fix	CROSS	X Aŭa	× Aob	NDA	HOLD
(169) (freetext) PACIFIC TWO TA														
(83)	AT	COS	TS CL	EARE	D RC	UTE								88.
(19)	MA	INTA	IN F	330										
											-			
3_ 899	AN TI	PRB S	30 0	IRBL VI	F SRV	E EAL	T	VRD	COORD	RCPT			HLP	CLS

Advanced Data Link Operations 12 September 2012

TAILORED ARRIVAL UPLINK

- Tailored Arrivals enable VNAV path to the Localizer.
- FMS determines most efficient aircraft descent profile

Advanced Data Link Operations 12 September 2012

Federal Aviation Administration

TA Radar Vectoring/Routing

- The goal of the controller is to let the aircraft fly the TA without intervention, however at times it may be necessary to change an aircraft's flight path. To do this, the controller must:
 - Issue a radar vector for traffic.
 - When the vector is complete or to shortcut an aircraft, the following instructions are issued:
 - "Call Sign, cleared direct (waypoint on the TA) the remainder of the Pacific Two TA. Comply with Restrictions."

Termination of Tailored Arrival

- At any time the Tailored Arrival may be terminated by the aircraft or ATC.
- If the flight crew replies "UNABLE" to any TA clearance, or requests cancellation of the TA, the TA is terminated for that flight.
- If the Tailored Arrival is terminated.
 - Advise the aircraft "Tailored Arrival is terminated". Issue a new Route and Altitude clearance to the aircraft.
- Notify the downstream controller of OTA cancellation.

Fuel Savings from Top of Descent Cruise to Landing

	777-200/GE90-85B	747-400/PW4056
Full TA	1,303 lbs	2,291 lbs
Partial TA	379 lbs	1,100 lbs

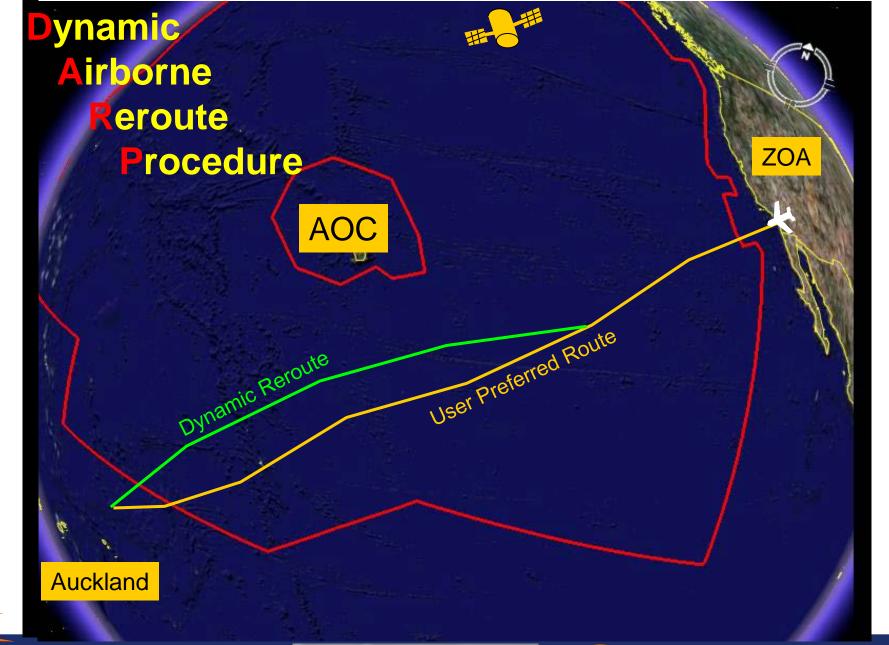
- Fuel consumption was calculated using the Boeing Climbout Program (BCOP) for low speed performance below 10,000 ft altitude.
- Fuel consumption above 10,000 ft altitude was calculated using the Boeing INFLT tool for cruise and descent.
- The vertical profile generated from BCOP and INFLT was matched to the mean descent paths of the collective ANOMS8 radar data.

GOLD

Dynamic Airborne Reroute Procedure (DARP)

Federal Aviation Administration

NEW ZE


NAVS

Dynamic Airborne Reroutes

- Allows Airborne Rerouting of Aircraft When Winds Indicate a More Fuel Efficient Route is Available
- Reduce Operating Costs by Taking Advantage of Updated Winds
- FANS and Air Traffic Services Inter-facility Data Communications (AIDC) Required
- Ongoing Trials in the South Pacific

Advanced Data Link Operations 12 September 2012

Federal Aviation Administration

Dynamic Airborne Reroutes

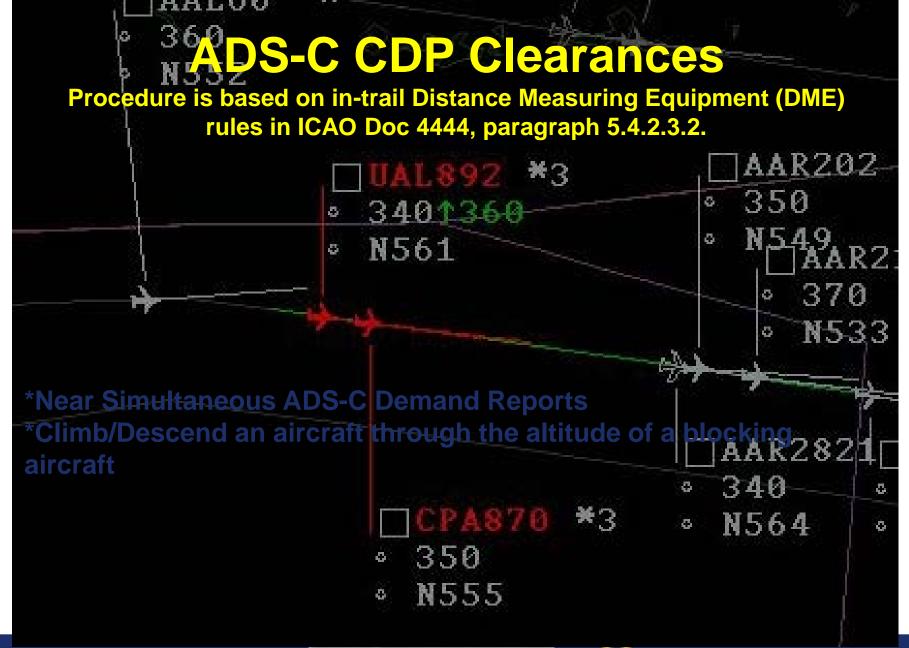
NFFF

പ്

DARPS have saved flights 2000 pounds of fuel burn and 7 minutes flying time

NZZO

Advanced Data Link Operations 12 September 2012



Federal Aviation Administration

ZSE,

ZOA,

ZLA

Advanced Data Link Operations 12 September 2012

Advanced Data Link Operations 12 September 2012

Federal Aviation Administration